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’ INTRODUCTION

Ovarian cancer is the fifth most deadly cancer in women and
has the highest mortality rate of all gynecological cancers.1 In
the U.S., 21,880 new patients were diagnosed with ovarian
cancer in 2010 and approximately 13,850 succumbed to the
disease.1 Despite aggressive surgical cytoreduction and first
line combination chemotherapy of carboplatin and paclitaxel,
there has been no significant improvement in survival of
patients with ovarian cancer.2 The disease recurs in most cases
such that the 5-year survival rate for patients with advanced
ovarian cancer is approximately 20%.3 This high mortality rate
is attributed to drug-resistant primary tumors and widespread
metastasis to the serosal cavities through associated peritoneal
and/or pleural effusions (for review, see Davidson4). In fact,
70% of new patients with ovarian cancer are diagnosed at stages
III and IV according to the International Federation of
Gynecology and Obstetrics (FIGO).3

Effusions are driven by the disruption of the homeostatic
forces that control the flow into and out of serosal cavities, and
are triggered by tumors. The mechanisms underlying the
formation of effusions include lymphatic obstruction by tumor
cells5 (which impairs normal drainage), vascular invasion and
increased permeability driven by secretion of vascular en-
dothelial growth factor (VEGF)6 and cytokines.7 Malignant
cells, reactive mesothelial cells, which display features that
mimic those of neoplastic transformation, and inflammatory
cells (macrophages, tumor-infiltrating T cells) are the primary
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ABSTRACT: The presence of tumor cells in effusions within serosal
cavities is a clinical manifestation of advanced-stage cancer and is
generally associated with poor survival. Identifying molecular targets
may help to design efficient treatments to eradicate these aggressive
cancer cells and improve patient survival. Using a state-of-the-art
TaqMan-based qRT-PCR assay, we investigated the multidrug resis-
tance (MDR) transcriptome of 32 unpaired ovarian serous carcinoma
effusion samples obtained at diagnosis or at disease recurrence
following chemotherapy. MDR genes were selected a priori based
on an extensive curation of the literature published during the last three decades. We found three gene signatures with a statistically
significant correlation with overall survival (OS), response to treatment [complete response (CR) vs other], and progression free
survival (PFS). Themedian log-rank p-values for the signatures were 0.023, 0.034, and 0.008, respectively. No correlation was found
with residual tumor status after cytoreductive surgery, treatment (with or without chemotherapy) and stage defined according to the
International Federation of Gynecology and Obstetrics. Further analyses demonstrated that gene expression alone can effectively
predict the survival outcome of women with ovarian serous carcinoma (OS, log-rank p = 0.0000; and PFS, log-rank p = 0.002).
Interestingly, the signature for overall survival is the same in patients at first presentation and those who had chemotherapy and
relapsed. This pilot study highlights two new gene signatures that may help in optimizing the treatment for ovarian carcinoma
patients with effusions.
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cellular components of effusions.8 Although effusions are
found in a hypoxic microenvironment with reduced access
to nutrients, the tumor cells can proliferate and further
metastasize. Furthermore, these cells have the capability to
overcome anoikis, the cell death that occurs due to insufficient
cell-matrix interactions (for review, see Simpson et al.9).
Because the malignant cells found in effusions are frequently
resistant to standard chemotherapy, we postulate that they
may express multidrug resistance (MDR) genes.

To test this hypothesis, we have extensively reviewed the
literature of the past thirty years to select genes whose expression
is associated with multidrug resistance. The expression profiles of
these genes were assessed using a TaqMan-based qRT-PCR
assay in 32 unpaired ovarian serous carcinoma effusion samples
obtained at diagnosis or at disease recurrence following che-
motherapy. We recently showed that the TaqMan low density
array (TLDA), a high-throughput qRT-PCR assay, provides the
highest sensitivity and specificity in measuring ABC transporter
gene-expression profiles, a superfamily of 48 highly homologous
members, initially studied in the NCI-60 cancer cell line panel.10

This is particularly important, as MDR is mediated by families of
highly homologous genes encoding drug uptake transporters
(solute carriers), efflux transporters (both ATP and non-ATP
dependent transporters), DNA repair proteins and phase I and II
metabolism enzymes. These mechanisms, along with evasion of
drug-induced apoptosis, alteration of target proteins, and drug
sequestration, can act individually or synergistically, leading to
multidrug resistance (MDR), in which cells become resistant to a
variety of structurally and mechanistically unrelated drugs (for
review, see Gillet and Gottesman11). Here, we report a pilot
study evaluating the power of MDR genes to predict overall and
progression-free survival, which may help to categorize patients
and individualize treatment.

’MATERIALS AND METHODS

Tumor Samples. Specimens and clinical data were obtained
from the Department of Gynecologic Oncology at the Norwe-
gian Radium Hospital. Fresh, nonfixed effusions (n = 32; 27
peritoneal, 5 pleural) were obtained from 32 patients diagnosed
with serous ovarian carcinoma (n = 25), primary peritoneal
serous carcinoma (n = 6) or tubal serous carcinoma (n = 1). All
will be referred to as ovarian carcinoma henceforth due to their
closely linked histogenesis and phenotype. Effusions were
submitted for routine diagnostic purposes to the Division of
Pathology at the Norwegian Radium Hospital from 2000 to
2006, and processed immediately after tapping. Cell blocks
were prepared using the thrombin clot method. The remaining
material was fresh-frozen at �70 �C in RPMI1640 medium
supplemented with 50% FCS and 20% DMSO at a ratio of 1:1
(Invitrogen, Carlsbad, CA, USA). Diagnoses were established
by morphology and immunohistochemistry.12 Clinicopatholo-
gic data are detailed in Table 1. The Regional Committee for
Medical Research Ethics in Norway approved the study.
Preparation of Total RNA. Total RNA was prepared using

the TRIzol method (Invitrogen, Carlsbad, CA, USA). RNAwas
quantitated using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies Inc., Wilmington, DE, USA). The
integrity of the RNA samples was assessed using an Agilent
2100 Bioanalyzer (Agilent Technologies, Foster City, CA,
USA) and then stored at �80 �C.
Reverse Transcription. Synthesis of cDNA from 1 μg total

RNA in a 20 μL reaction volume was carried out using the high
capacity cDNA kit with RNase inhibitor (Applied Biosystems,
Foster City, CA,USA) as per themanufacturer’s instructions. The
reverse transcription conditions were as follows: 10 min at 25 �C,
120 min at 37 �C, 5 s at 85 �C. Following reverse transcription,
cDNA was stored at 4 �C.
TaqMan Low Density Arrays (TLDAs). Expression levels of

380MDR-associated genes were measured using custom-made
TaqMan low density arrays (Applied Biosystems, Foster City,
CA, USA) (Supplementary Table 1 in the Supporting In-
formation). cDNA was mixed with 2� TaqMan Universal
PCR Master Mix (Applied Biosystems, Foster City, CA, USA),
loaded on the TLDA card, and run on an ABI Prism 7900 HT
sequence detection system (Applied Biosystems, Foster City,
CA, USA) as per the manufacturer’s instructions.
Data Analysis. Data from TaqMan low density arrays was

collected for each of the 32 samples of ovarian carcinomas in SDS
(sequence detection system) files, which were then uploaded into
RQ (relative quantification) Manager software. This program
provides the expression level in log 2 value for each gene. These
values are known as the cycle threshold and range from 1 to 40.
Unexpressed genes are labeled as undetermined. Data sets are
accessible from the Gene Expression Omnibus (GEO) reposi-
tory, accession number GSE29702, at the following Web site:
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29702.
A total of 381 genes were analyzed; the rRNA 18s, used for quality
control, was the only gene arrayed in four replicates. The median
expression of each sample was subtracted from all gene expression
data for that sample. The expression data from 18s probes were
averaged together.
We first removed genes with more than 20% missing values

across all samples, resulting in 350 genes for further data analysis.
Based on these 350 genes, we then changed the sign of each value
(positive to negative and vice versa) and transformed all values to

Table 1. Clinicopathologic Data of the Study Cohort
(32 Patients)

parameter number

age (mean; range) 64; 45�83

FIGO stage

III 18

IV 12

NAa 2

grade

I 1

II 5

III 20

NAb 6

residual disease

e1 cm 17

>1 cm 9

NAb 6

chemotherapy prior to tapping

no 15

yes 16

NAa 1
aNA = not available. bNA = not available, including specimens from 5
inoperable patients and 1 patient with surgery at another hospital in
which grade and residual disease volume were not registered, and the
primary tumor could not be accessed for grading.
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Figure 1. Color-coded heatmap of enriched clinical parameters with corresponding gene expression levels (median p-values of ten times random
sampling in linear regression fitting <0.05). The left section of the heatmap shows the correlation of the 88 selected genes to various clinical parameters,
whereas the right section shows the differential expression of these genes in 32 effusion samples. Green and red colors in the left section represent
negative and positive correlation between clinical parameters and the corresponding gene expression levels, respectively. The green and red colors in the
right section represent low and high gene expression levels, respectively, while white represents missing values. FIGO: International Federation of
Gynecology and Obstetrics. Rest: residual tumor. Ls: less. Gt: greater. Chemo: chemotherapy. Resp1_good: complete response. Resp1_other: partial
response/stable disease/progression/allergic or adverse reaction. PFS: progression-free survival. OS: overall survival.
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Z-scores (i.e., gene expression values have mean = 0 and variance = 1
across all samples). Z-Scores of the 350 genes were then fitted
into a linear regression model with random sampling strategy in

order to find the possible cause-and-effect between the gene
expression level and the corresponding clinical parameters (i.e.,
survival time and FIGO stage). This was done using a P < 0.05
cutoff for the linear model. For genes selected by this cutoff, we
applied hierarchical clustering on the Z-scores, and then visua-
lized both the Z-score clusters and the corresponding T-values of
the enriched clinical parameters (e.g., median p-values of ten
times random sampling in linear regression fitting <0.05) in a
color-coded heatmap. In the heatmap, green and red colors
in the left section represent negative and positive correlation
between clinical parameters and the corresponding gene ex-
pression levels, respectively; in the right section, the green and
red colors represent low and high gene expression levels,
respectively; white color represents missing values.13�15 For
the regression model with random sampling strategy, ten times
leave-one-out sampling was used; a gene with median p-value
smaller than 0.05 was selected as a potential marker gene. Based
on the previous analysis, we classified samples into two groups
according to the expression signature of the marker genes for
each parameter. The ten times leave-one-out sampling ap-
proach was also applied to the classification as well as to the
follow-up survival analysis (log-rank test).
Boxplot. MATLAB software (MathWorks, Natick, MA, USA)

was used to perform the notched-box plot. All default parameters
were applied in Matlab boxplot function. In this plot, the red line
represents themedium of data center, and the outliers are larger than
q3 + w(q3 � q1)q3 + w(q3 � q1) or smaller than q1 � w(q3 � q1),
where q1 and q3 are the 25th and 75th percentiles, respectively.
Maximum whisker length is w; the default is a w of 1.5.

’RESULTS

Correlation of 380 MDR-Linked Gene Expression Profiles
with Clinical Covariates.We investigated the expression profiles
of 380 multidrug resistance-associated genes in 32 unpaired
ovarian serous carcinoma effusion samples obtained at diagnosis
or at disease recurrence following chemotherapy (Table 1). These
genes, selected from the literature published in the past 30 years,
were reported to have a role in multidrug resistance, based mainly
on in vitro studies.16 The correlation of the gene expression
profiles was then assessed with six clinical parameters (Figure 1).
The genes were selected based on their p-value using a regression
model with random sampling strategy (leave-one-out cross-
validation model17). One sample at a time was excluded, and
the remaining samples were analyzed to find significant correla-
tions, based on our criterion of p < 0.05 in the linear regression
model. The model is then used to predict the excluded sample.
This method yields an unbiased estimate of the prediction
accuracy. All the selected genes had a median p-value <0.05.
We found three gene signatures with a statistically significant
correlation with overall survival (OS), response to treatment
[complete response (CR) vs other], and progression free survival
(PFS) (Table 2). The median log-rank p-values for the signatures
were 0.023, 0.034, and 0.008, respectively. No correlation was
found with residual tumor status after cytoreductive surgery
(Supplementary Table 2 in the Supporting Information), treat-
ment (Supplementary Table 3 in the Supporting Information)
and stage defined according to the International Federation of
Gynecology and Obstetrics (FIGO) (Supplementary Table 4 in
the Supporting Information).
Survival Risk Prediction and Gene Pathway Analysis. Our

studies demonstrated that gene expression alone could effectively

Table 2. Correlation of Gene Expression Profiles with
Clinical Covariatesa

median p-values:b 0.023 0.027

gene ID OS Ls 36 monthsc OS Gt 36 monthsd

VEGFA �3.5 3.6

BCR-ABL �2.9 2.8

RPL36 �2.2 2.3

SIRT6 �2.2 2.2

SLC15A2 �2.1 2.1

LBR 2.1 �2.2

ABCB1 2.1 �2.1

FASLG 2.3 �2.2

TIMP1 2.3 �2.2

BCL2A1 2.3 �2.3

ABCD2 2.4 �2.3

APOE 2.4 �2.3

AQP9 2.7 �2.7

FN1 2.7 �2.7

TGFB1 2.8 �3.0

SLC2A5 3.0 �3.0

CCL2 3.3 �3.2

BRCA1 3.3 �3.3

median p-values 0.034 0.14

gene ID Resp1_goode Resp1_otherf

XPA 2.1 0.0

MGMT 2.1 0.0

MUTYH 2.1 �2.2

ABCA4 2.1 �2.2

TPRKB 2.2 �2.2

ABCB10 2.2 �2.2

BIRC6 2.3 �2.2

ABCA13 2.4 �2.4

CIAPIN1 3.0 �2.8

CASP9 3.1 �3.0

median p-values 0.008 0.043

gene ID PFS Ls 6 monthsg PFS Gt 6 monthsh

POLH �2.8 2.7

ABCB10 �2.2 2.1

FAS �2.2 0.0

MUTYH �2.1 2.2

SRC 2.1 0.0

AKR1C1/AKR1C2 2.4 �2.4
aThis table presents T-values of regression analysis. Positive and
negative T-values represent positive and negative correlation between
gene expression levels and clinical covariates, respectively. bMedian p-
values of ten times random sampling in linear regression fitting <0.05.
cOverall survival less than 36 months. dOverall survival greater than 36
months. eResp1_good: complete response. fResp1_other: partial re-
sponse/stable disease/progression/allergic or adverse reaction. g Pro-
gression free survival less than 6 months. h Progression free survival
greater than 6 months.
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predict the survival outcome of women with ovarian serous
carcinoma. As noted above, analysis of effusion samples led us
to an 18-gene signature that predicts OS (log-rank p = 0.0000)
(Table 1 and Figure 2). Thirteen genes were found to be

positively correlated with poor OS, while five genes were found
to be negatively correlated with poor OS. Further analysis of the
18-gene signature highlighted one pathway linking 11 genes
(Figure 3) that promote tumor growth and survival.
Our study also revealed a 6-gene signature predicting progres-

sion-free survival (log-rank p = 0.002) (Figure 4). The signature
is composed of 4 genes negatively correlated with poor PFS; they
encode the base-excision repair enzyme MUTYH, the low
fidelity polymerase POLH, the death receptor FAS, and the
ABC transporter ABCB10. Two genes, the proto-oncogene SRC
encoding a non-receptor tyrosine kinase and AKR1C1, which
encodes an enzyme involved in phase 1 metabolism, were
positively correlated with poor PFS, therefore linking their
upregulation with poor PFS. The assay used to detect AKR1C1
is also able to detect the transcript AKR1C2. Therefore, further
study is required to determine which form is predominant in
these samples. Subsequent gene network analysis did not identify
a meaningful pathway linking these six genes.

’DISCUSSION

This pilot study reveals two different signatures able to predict
overall and progression free survival, respectively, in ovarian
serous carcinoma effusion samples. The gene signatures were
validated using a leave-one-out cross-validation model. The
results suggest strongly that the analyzed genes are involved in
multidrug resistance, as we found a 6-gene signature for the
prediction of PFS. Moreover, the data indicate that the genes we

Figure 2. Kaplan�Meier curve for overall survival. An 18-gene signa-
ture alone can effectively predict the overall survival of women with
ovarian serous carcinoma (log-rank p = 0.0000). Blue curve: 10 patients,
meanOS 55months, median 41months. Green curve: 22 patients, mean
OS 19 months, median 18 months.

Figure 3. Ingenuity pathway analysis of the 18 genes predicting poor OS for patients presenting with ovarian serous carcinoma effusions. The 18-gene
signature was analyzed by Ingenuity Pathways Analysis software (Ingenuity Systems, Redwood City, CA) to determine whether biological relationships
exist between the genes present in this signature. A numerical value was determined by the software to rank networks according to relevance to the genes
in the input data set. The highest ranked pathway is presented. Green represents a decrease in expression, while red is an increase in expression of these
genes. White represents the genes that are suggested by the software to be part of the proposed pathway.
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have selected promote cell proliferation, highlighted by an 18-
gene signature predicting OS. Given that many primary ovarian
tumors are drug-resistant, our study provides potential thera-
peutic targets in effusions that may be investigated in order to
improve response to therapy.

Driver mutations are a class of somatic mutations that are
often involved in cancer development. For example, C:G to A:T
transversion mutations were identified to be among the most
predominant type of these mutations in many cancers, including
ovarian cancer.18 This highlights the importance of enzymes
mediating DNA repair that preserve genomic integrity by
counteracting the accumulation of mutation events. We found
two DNA repair genes to be downregulated in the 6-gene
signature for PFS. Besides POLH, for which a role in ovarian
cancer had not yet been studied, we identified MUTYH, an
adenine DNA glycosylase that mediates removal of A paired with
G or C.19

Two other genes, ABCB10 and FAS (CD95), were found to
predict short PFS when they are downregulated. ABCB10 is a
mitochondrial ATP-binding cassette (ABC) transporter that may
be involved in heme biosynthesis.20 To the best of our knowledge,
this transporter has only been linked to cancer andMDR through
one in vitro study showing an increase in DNA-copy numbers of
this gene in a camptothecin-resistant colon cancer cell line (HT-
29).21 As for FAS, several studies have reported its association
with aggressive ovarian cancer.22�24 The overexpression of two
genes, SRC and AKR1C1, was found to be associated with poor
prognosis for PFS. SRC, a non-receptor tyrosine kinase, is a key
mediator of multiple signaling pathways that regulate critical
cellular functions, and is aberrantly expressed in many cancers
including ovarian cancer.25 It was shown that SRC inhibition has
potent antiangiogenic effects.26 A strategy that is now being
evaluated in a phase II trial (NCT00610714, OVERT1) uses
the highly selective inhibitor of SRC, Saracatinib (AZD0530),
with or without a combination of carboplatin and paclitaxel.
Reports on the role of SRC in MDR are difficult to reconcile,
as its overexpression (and activation) was shown in one study to

promote drug resistance and tumor survival in a mouse ovarian
cancer cell line,27 while another study revealed that its inhibition
enhanced the cytotoxicity of paclitaxel and cisplatin in both mouse
and human ovarian cancer cells.28 The aldo-keto reductase 1C also
known as dihydrodiol dehydrogenase (DDH) mediates the meta-
bolism of steroid hormones and xenobiotics.29 Expression of
AKR1C1 was correlated with poor prognosis in non-small cell
lung cancer, and with disease progression in esophageal cancer,
whereas AKR1C2 was found to be correlated with disease
progression in patients with prostatic cancer.30 Multiple studies
have shown the role of AKR1C1 inMDR,31,32 and specifically its
role in cisplatin resistance in ovarian cancer cells.33�35

Interestingly, we found that ABCB1 (MDR1, P-gp), the most
studied drug efflux transporter and a common cause of resistance
to paclitaxel, which is uniformly used in the treatment of ovarian
cancer, positively correlates with poor OS but not with PFS, as
one could have hypothesized. We can therefore speculate that
ABCB1 has a role in tumor biology in contrast to its expected role
in conferring MDR. Research has shown that tumor cells activate
diverse nonspecific stress response pathways in response to
hypoxic, acidic, and oxidative stresses. Numerous studies have
shown that one of the responses to these stresses is the
upregulation of ABCB1 (for review, see Callaghan et al.36). Also,
the immune system, through macrophages, can induce ABCB1
expression. However, whether ABCB1 expression has a role in
tumor biology has yet to be substantiated.

However, closer analysis of the data set indicates some varia-
bility in the expression of ABCB1 among the patients profiled.

Figure 5. Boxplot of ABCB1 expression in patients treated or not with
chemotherapy. The y-axis indicates log 2 cycle threshold (Ct) values.
The smaller the Ct value, the greater the expression. Postchemo group =
17, prechemo group = 15. The median is indicated by the red line, while
the first and third quartiles are the edges of the white area, known as the
interquartile range (IQR). The extreme values are the ends of the dashed
lines (whiskers) extending from the IQR (within 1.5 times the IQR from
the upper or lower quartile), whereas the outliers are larger than the
whiskers.

Figure 4. Kaplan�Meier curve for progression free survival. Log rank p-
value = 0.002. 6-Gene signature alone can effectively predict the progres-
sion free survival of women with ovarian serous carcinoma (log-rank p =
0.002). Blue curve: 19 patients, mean PFS 4 months, median 2 months.
Green curve: 13 patients, mean PFS 17 months, median 10 months.
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Four patients expressed ABCB1 at a relatively high level (all had
received chemotherapy, two had short PFS, one medium, and one
long PFS), but this information is not revealed by the current
analytical methods, which are based upon mean values to find
differentially expressed genes (Figure 5). This observation high-
lights a recurrent issue related to the analysis of high-throughput
gene expression profiling. In addition to identifying a gene
signature that defines a trend among patients, it is critical to
pinpoint individual patients presenting any specific marker (e.g.,
ABCB1) that could lead to treatment failure. Although such
precise analysis can be performed using a system of classifiers in
which the system decision is based on a Boolean rule combining
individual classifier decisions, this would require the analysis of
several hundred samples to avoid overfitting problems.37,38 Such
subtle gene expression differences among patients might be the
key to ending the long-lasting debate on intrinsic and acquired
drug resistance signatures. Indeed, a standard analysis leads to the
discrimination of patients in two groups based upon a pattern of
gene expression representing an average state of resistance or
sensitivity as might be seen in intrinsic resistance. Then, the
individual response to chemotherapy rather than the statistical
analysis would lead to the identification of a very small group of
patients overexpressing poor survival markers, which are unde-
tectable using current statistical analysis. The concept that che-
motherapy resistance as manifested by recurrence after treatment
(acquired resistance) results from the action of a small number
(g1) of MDR genes which differ from patient to patient is
corroborated in this study, as we were not able to identify a
specific gene signature correlating with samples taken post-che-
motherapy. However, the small size of the data set limits the
strength of such a statement.

In addition to ABCB1, upregulation of 12 other genes was
found to be correlated with poor overall survival. Among these
genes, the roles of the peroxisomal ABC transporter ABCD2
(ALDRP, adrenoleukodystrophy related protein), which trans-
ports the coenzyme A esters of very-long-chain fatty acids,39 and
SLC2A5 (GLUT5), a transporter involved in fructose uptake,40

have yet to be determined. Five genes were found to be
negatively correlated with poor OS. The roles of the uptake
transporter SLC15A2 (PEPT2), a proton-coupled oligopeptide
transporter,41,42 and the tyrosine kinase BCR-ABL in ovarian
serous carcinoma are yet to be unraveled.

Paradoxically, we found that downregulation of VEGFA
(VEGF) and the upregulation of TIMP1, a tissue inhibitor of
metalloproteinases (MMPs), correlate with poor OS. In support
of this paradoxical observation, multiple other studies have
shown an association of TIMP1 expression with poor prognosis
in several cancers including breast, renal, colorectal, and papillary
thyroid cancers as well as non-Hodgkin lymphoma.43�45 Func-
tional studies showed that TIMP1 has a role in the regulation of
apoptosis, which may lead to cancer progression through apop-
tosis inhibition.46,47 As for VEGF, numerous studies performed
to assess its clinical significance in ovarian cancer (mainly in
primary tumors) have shown an association between elevated
VEGF and poor OS (for review, see Carpini et al.48). However,
our finding is consistent with Davidson and colleagues, who
characterized the mRNA and protein profiles of angiogenesis-
related genes in effusion samples of patients with ovarian
carcinoma.7 One should bear in mind that although the effusion
samples analyzed in this study contained greater than 50% cancer
cells, these samples also contained inflammatory cells that might
promote antitumor signals. Another parameter that must not be

neglected is the epithelial�mesenchymal transition that the cells
analyzed in this study have undergone. Cells have lost their
epithelial morphology, reorganized their cytoskeleton, and ac-
quired a motile phenotype, which clearly affects their gene ex-
pression profile compared to the epithelial cells from the solid
tumor of origin.49 A recent study investigating the same genes
indicates that primary ovarian serous carcinoma has a different
pattern of MDR gene expression with a different signature
predicting overall survival (J.-P. Gillet et al., unpublished data).

One interesting observation is that the signature for overall
survival is the same in patients at first presentation and those who
had chemotherapy and relapsed. The simplest explanation for
this observation is that the chemotherapy did not select in
general for a new population of cancer cells, suggesting that
the surviving cells were stochastic survivors of less than 100%
effective chemotherapy and not a strongly selected subpopula-
tion. This does not rule out a possible role for individual drug-
resistance genes being expressed at higher levels when ovarian
cancer effusions relapse after chemotherapy, but only suggests
that the biology of the original tumor is unchanged.

This pilot study provides strong data onMDR-associated gene
expression profiles in ovarian serous carcinoma effusions, using a
high-throughput TaqMan-based qRT-PCR assay. The findings
warrant further analysis to validate these two survival signatures
on a larger cohort of effusion samples. Although we and others
have shown the superiority of TaqMan-based qRT-PCR over
high-density microarrays, especially for studying genes that
belong to a highly homologous gene family,10,50 the best
analytical strategy remains to be determined. Deep sequencing
arises as a promising accurate method of analysis of the whole
transcriptome. However, the benefits of such an assay have to be
carefully weighed in terms of data quality, efficacy, and cost
compared with state-of-the-art TaqMan-based qRT-PCR.
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